There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(sin({2}^{sinh(x)}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(sin({2}^{sinh(x)}))\right)}{dx}\\=&\frac{cos({2}^{sinh(x)})({2}^{sinh(x)}((cosh(x))ln(2) + \frac{(sinh(x))(0)}{(2)}))}{(sin({2}^{sinh(x)}))}\\=&\frac{{2}^{sinh(x)}ln(2)cos({2}^{sinh(x)})cosh(x)}{sin({2}^{sinh(x)})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !