Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{log{2}^{(4x)}log*4(\frac{2}{x})}{1}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{8l^{2}o^{2}g^{2}{2}^{(4x)}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{8l^{2}o^{2}g^{2}{2}^{(4x)}}{x}\right)}{dx}\\=&\frac{8l^{2}o^{2}g^{2}*-{2}^{(4x)}}{x^{2}} + \frac{8l^{2}o^{2}g^{2}({2}^{(4x)}((4)ln(2) + \frac{(4x)(0)}{(2)}))}{x}\\=&\frac{32l^{2}o^{2}g^{2}{2}^{(4x)}ln(2)}{x} - \frac{8l^{2}o^{2}g^{2}{2}^{(4x)}}{x^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return