Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of p is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ np{(1 - p)}^{(n - 1)}\ with\ respect\ to\ p:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = np(-p + 1)^{(n - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( np(-p + 1)^{(n - 1)}\right)}{dp}\\=&n(-p + 1)^{(n - 1)} + np((-p + 1)^{(n - 1)}((0 + 0)ln(-p + 1) + \frac{(n - 1)(-1 + 0)}{(-p + 1)}))\\=&n(-p + 1)^{(n - 1)} - \frac{n^{2}p(-p + 1)^{(n - 1)}}{(-p + 1)} + \frac{np(-p + 1)^{(n - 1)}}{(-p + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return