There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ sin(e^{x} - 2)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(e^{x} - 2)\right)}{dx}\\=&cos(e^{x} - 2)(e^{x} + 0)\\=&e^{x}cos(e^{x} - 2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( e^{x}cos(e^{x} - 2)\right)}{dx}\\=&e^{x}cos(e^{x} - 2) + e^{x}*-sin(e^{x} - 2)(e^{x} + 0)\\=&e^{x}cos(e^{x} - 2) - e^{{x}*{2}}sin(e^{x} - 2)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( e^{x}cos(e^{x} - 2) - e^{{x}*{2}}sin(e^{x} - 2)\right)}{dx}\\=&e^{x}cos(e^{x} - 2) + e^{x}*-sin(e^{x} - 2)(e^{x} + 0) - 2e^{x}e^{x}sin(e^{x} - 2) - e^{{x}*{2}}cos(e^{x} - 2)(e^{x} + 0)\\=&e^{x}cos(e^{x} - 2) - 3e^{{x}*{2}}sin(e^{x} - 2) - e^{{x}*{3}}cos(e^{x} - 2)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( e^{x}cos(e^{x} - 2) - 3e^{{x}*{2}}sin(e^{x} - 2) - e^{{x}*{3}}cos(e^{x} - 2)\right)}{dx}\\=&e^{x}cos(e^{x} - 2) + e^{x}*-sin(e^{x} - 2)(e^{x} + 0) - 3*2e^{x}e^{x}sin(e^{x} - 2) - 3e^{{x}*{2}}cos(e^{x} - 2)(e^{x} + 0) - 3e^{{x}*{2}}e^{x}cos(e^{x} - 2) - e^{{x}*{3}}*-sin(e^{x} - 2)(e^{x} + 0)\\=&e^{x}cos(e^{x} - 2) - 7e^{{x}*{2}}sin(e^{x} - 2) - 6e^{{x}*{3}}cos(e^{x} - 2) + e^{{x}*{4}}sin(e^{x} - 2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !