Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} - 4Rx + 6{R}^{2})}{(3{x}^{2} - 12Rx + 12{R}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(3x^{2} - 12Rx + 12R^{2})} - \frac{4Rx}{(3x^{2} - 12Rx + 12R^{2})} + \frac{6R^{2}}{(3x^{2} - 12Rx + 12R^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(3x^{2} - 12Rx + 12R^{2})} - \frac{4Rx}{(3x^{2} - 12Rx + 12R^{2})} + \frac{6R^{2}}{(3x^{2} - 12Rx + 12R^{2})}\right)}{dx}\\=&(\frac{-(3*2x - 12R + 0)}{(3x^{2} - 12Rx + 12R^{2})^{2}})x^{2} + \frac{2x}{(3x^{2} - 12Rx + 12R^{2})} - 4(\frac{-(3*2x - 12R + 0)}{(3x^{2} - 12Rx + 12R^{2})^{2}})Rx - \frac{4R}{(3x^{2} - 12Rx + 12R^{2})} + 6(\frac{-(3*2x - 12R + 0)}{(3x^{2} - 12Rx + 12R^{2})^{2}})R^{2} + 0\\=&\frac{-6x^{3}}{(3x^{2} - 12Rx + 12R^{2})^{2}} + \frac{36Rx^{2}}{(3x^{2} - 12Rx + 12R^{2})^{2}} + \frac{2x}{(3x^{2} - 12Rx + 12R^{2})} - \frac{84R^{2}x}{(3x^{2} - 12Rx + 12R^{2})^{2}} - \frac{4R}{(3x^{2} - 12Rx + 12R^{2})} + \frac{72R^{3}}{(3x^{2} - 12Rx + 12R^{2})^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return