There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{8}{({x}^{2} - 16)} + \frac{8}{({x}^{2})} + ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{8}{(x^{2} - 16)} + \frac{8}{x^{2}} + ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{8}{(x^{2} - 16)} + \frac{8}{x^{2}} + ln(x)\right)}{dx}\\=&8(\frac{-(2x + 0)}{(x^{2} - 16)^{2}}) + \frac{8*-2}{x^{3}} + \frac{1}{(x)}\\=&\frac{-16x}{(x^{2} - 16)^{2}} - \frac{16}{x^{3}} + \frac{1}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !