There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{(2{x}^{2} + {y}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{(2x^{2} + y^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(2x^{2} + y^{2})}\right)}{dx}\\=&({e}^{(2x^{2} + y^{2})}((2*2x + 0)ln(e) + \frac{(2x^{2} + y^{2})(0)}{(e)}))\\=&4x{e}^{(2x^{2} + y^{2})}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x{e}^{(2x^{2} + y^{2})}\right)}{dx}\\=&4{e}^{(2x^{2} + y^{2})} + 4x({e}^{(2x^{2} + y^{2})}((2*2x + 0)ln(e) + \frac{(2x^{2} + y^{2})(0)}{(e)}))\\=&4{e}^{(2x^{2} + y^{2})} + 16x^{2}{e}^{(2x^{2} + y^{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !