There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(sqrt(5x - 4) - sqrt(x))}{x} - 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sqrt(5x - 4)}{x} - \frac{sqrt(x)}{x} - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sqrt(5x - 4)}{x} - \frac{sqrt(x)}{x} - 1\right)}{dx}\\=&\frac{-sqrt(5x - 4)}{x^{2}} + \frac{(5 + 0)*\frac{1}{2}}{x(5x - 4)^{\frac{1}{2}}} - \frac{-sqrt(x)}{x^{2}} - \frac{\frac{1}{2}}{x(x)^{\frac{1}{2}}} + 0\\=&\frac{-sqrt(5x - 4)}{x^{2}} + \frac{5}{2(5x - 4)^{\frac{1}{2}}x} + \frac{sqrt(x)}{x^{2}} - \frac{1}{2x^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !