Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{{x}^{2}}{(7{x}^{2} + 8)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(7x^{2} + 8)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(7x^{2} + 8)}\right)}{dx}\\=&(\frac{-(7*2x + 0)}{(7x^{2} + 8)^{2}})x^{2} + \frac{2x}{(7x^{2} + 8)}\\=&\frac{-14x^{3}}{(7x^{2} + 8)^{2}} + \frac{2x}{(7x^{2} + 8)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-14x^{3}}{(7x^{2} + 8)^{2}} + \frac{2x}{(7x^{2} + 8)}\right)}{dx}\\=&-14(\frac{-2(7*2x + 0)}{(7x^{2} + 8)^{3}})x^{3} - \frac{14*3x^{2}}{(7x^{2} + 8)^{2}} + 2(\frac{-(7*2x + 0)}{(7x^{2} + 8)^{2}})x + \frac{2}{(7x^{2} + 8)}\\=&\frac{392x^{4}}{(7x^{2} + 8)^{3}} - \frac{70x^{2}}{(7x^{2} + 8)^{2}} + \frac{2}{(7x^{2} + 8)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return