There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ sin(cos(tan(cot(x))))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(cos(tan(cot(x))))\right)}{dx}\\=&cos(cos(tan(cot(x))))*-sin(tan(cot(x)))sec^{2}(cot(x))(-csc^{2}(x))\\=&sin(tan(cot(x)))cos(cos(tan(cot(x))))sec^{2}(cot(x))csc^{2}(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( sin(tan(cot(x)))cos(cos(tan(cot(x))))sec^{2}(cot(x))csc^{2}(x)\right)}{dx}\\=&cos(tan(cot(x)))sec^{2}(cot(x))(-csc^{2}(x))cos(cos(tan(cot(x))))sec^{2}(cot(x))csc^{2}(x) + sin(tan(cot(x)))*-sin(cos(tan(cot(x))))*-sin(tan(cot(x)))sec^{2}(cot(x))(-csc^{2}(x))sec^{2}(cot(x))csc^{2}(x) + sin(tan(cot(x)))cos(cos(tan(cot(x))))*2sec^{2}(cot(x))tan(cot(x))*-csc^{2}(x)csc^{2}(x) + sin(tan(cot(x)))cos(cos(tan(cot(x))))sec^{2}(cot(x))*-2csc^{2}(x)cot(x)\\=&-cos(tan(cot(x)))cos(cos(tan(cot(x))))sec^{4}(cot(x))csc^{4}(x) - sin(cos(tan(cot(x))))sin^{2}(tan(cot(x)))sec^{4}(cot(x))csc^{4}(x) - 2sin(tan(cot(x)))cos(cos(tan(cot(x))))tan(cot(x))sec^{2}(cot(x))csc^{4}(x) - 2sin(tan(cot(x)))cos(cos(tan(cot(x))))cot(x)sec^{2}(cot(x))csc^{2}(x)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -cos(tan(cot(x)))cos(cos(tan(cot(x))))sec^{4}(cot(x))csc^{4}(x) - sin(cos(tan(cot(x))))sin^{2}(tan(cot(x)))sec^{4}(cot(x))csc^{4}(x) - 2sin(tan(cot(x)))cos(cos(tan(cot(x))))tan(cot(x))sec^{2}(cot(x))csc^{4}(x) - 2sin(tan(cot(x)))cos(cos(tan(cot(x))))cot(x)sec^{2}(cot(x))csc^{2}(x)\right)}{dx}\\=&--sin(tan(cot(x)))sec^{2}(cot(x))(-csc^{2}(x))cos(cos(tan(cot(x))))sec^{4}(cot(x))csc^{4}(x) - cos(tan(cot(x)))*-sin(cos(tan(cot(x))))*-sin(tan(cot(x)))sec^{2}(cot(x))(-csc^{2}(x))sec^{4}(cot(x))csc^{4}(x) - cos(tan(cot(x)))cos(cos(tan(cot(x))))*4sec^{4}(cot(x))tan(cot(x))*-csc^{2}(x)csc^{4}(x) - cos(tan(cot(x)))cos(cos(tan(cot(x))))sec^{4}(cot(x))*-4csc^{4}(x)cot(x) - cos(cos(tan(cot(x))))*-sin(tan(cot(x)))sec^{2}(cot(x))(-csc^{2}(x))sin^{2}(tan(cot(x)))sec^{4}(cot(x))csc^{4}(x) - sin(cos(tan(cot(x))))*2sin(tan(cot(x)))cos(tan(cot(x)))sec^{2}(cot(x))(-csc^{2}(x))sec^{4}(cot(x))csc^{4}(x) - sin(cos(tan(cot(x))))sin^{2}(tan(cot(x)))*4sec^{4}(cot(x))tan(cot(x))*-csc^{2}(x)csc^{4}(x) - sin(cos(tan(cot(x))))sin^{2}(tan(cot(x)))sec^{4}(cot(x))*-4csc^{4}(x)cot(x) - 2cos(tan(cot(x)))sec^{2}(cot(x))(-csc^{2}(x))cos(cos(tan(cot(x))))tan(cot(x))sec^{2}(cot(x))csc^{4}(x) - 2sin(tan(cot(x)))*-sin(cos(tan(cot(x))))*-sin(tan(cot(x)))sec^{2}(cot(x))(-csc^{2}(x))tan(cot(x))sec^{2}(cot(x))csc^{4}(x) - 2sin(tan(cot(x)))cos(cos(tan(cot(x))))sec^{2}(cot(x))(-csc^{2}(x))sec^{2}(cot(x))csc^{4}(x) - 2sin(tan(cot(x)))cos(cos(tan(cot(x))))tan(cot(x))*2sec^{2}(cot(x))tan(cot(x))*-csc^{2}(x)csc^{4}(x) - 2sin(tan(cot(x)))cos(cos(tan(cot(x))))tan(cot(x))sec^{2}(cot(x))*-4csc^{4}(x)cot(x) - 2cos(tan(cot(x)))sec^{2}(cot(x))(-csc^{2}(x))cos(cos(tan(cot(x))))cot(x)sec^{2}(cot(x))csc^{2}(x) - 2sin(tan(cot(x)))*-sin(cos(tan(cot(x))))*-sin(tan(cot(x)))sec^{2}(cot(x))(-csc^{2}(x))cot(x)sec^{2}(cot(x))csc^{2}(x) - 2sin(tan(cot(x)))cos(cos(tan(cot(x))))*-csc^{2}(x)sec^{2}(cot(x))csc^{2}(x) - 2sin(tan(cot(x)))cos(cos(tan(cot(x))))cot(x)*2sec^{2}(cot(x))tan(cot(x))*-csc^{2}(x)csc^{2}(x) - 2sin(tan(cot(x)))cos(cos(tan(cot(x))))cot(x)sec^{2}(cot(x))*-2csc^{2}(x)cot(x)\\=&-sin(tan(cot(x)))cos(cos(tan(cot(x))))sec^{6}(cot(x))csc^{6}(x) + 3sin(cos(tan(cot(x))))sin(tan(cot(x)))cos(tan(cot(x)))sec^{6}(cot(x))csc^{6}(x) + 6cos(tan(cot(x)))cos(cos(tan(cot(x))))tan(cot(x))sec^{4}(cot(x))csc^{6}(x) + 6cos(tan(cot(x)))cos(cos(tan(cot(x))))cot(x)sec^{4}(cot(x))csc^{4}(x) - sin^{3}(tan(cot(x)))cos(cos(tan(cot(x))))sec^{6}(cot(x))csc^{6}(x) + 6sin(cos(tan(cot(x))))sin^{2}(tan(cot(x)))tan(cot(x))sec^{4}(cot(x))csc^{6}(x) + 6sin(cos(tan(cot(x))))sin^{2}(tan(cot(x)))cot(x)sec^{4}(cot(x))csc^{4}(x) + 2sin(tan(cot(x)))cos(cos(tan(cot(x))))sec^{4}(cot(x))csc^{6}(x) + 4sin(tan(cot(x)))cos(cos(tan(cot(x))))tan^{2}(cot(x))sec^{2}(cot(x))csc^{6}(x) + 12sin(tan(cot(x)))cos(cos(tan(cot(x))))tan(cot(x))cot(x)sec^{2}(cot(x))csc^{4}(x) + 2sin(tan(cot(x)))cos(cos(tan(cot(x))))sec^{2}(cot(x))csc^{4}(x) + 4sin(tan(cot(x)))cos(cos(tan(cot(x))))cot^{2}(x)sec^{2}(cot(x))csc^{2}(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !