Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ sin(cos(ln(x)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(cos(ln(x)))\right)}{dx}\\=&\frac{cos(cos(ln(x)))*-sin(ln(x))}{(x)}\\=&\frac{-sin(ln(x))cos(cos(ln(x)))}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sin(ln(x))cos(cos(ln(x)))}{x}\right)}{dx}\\=&\frac{--sin(ln(x))cos(cos(ln(x)))}{x^{2}} - \frac{cos(ln(x))cos(cos(ln(x)))}{x(x)} - \frac{sin(ln(x))*-sin(cos(ln(x)))*-sin(ln(x))}{x(x)}\\=&\frac{sin(ln(x))cos(cos(ln(x)))}{x^{2}} - \frac{cos(ln(x))cos(cos(ln(x)))}{x^{2}} - \frac{sin(cos(ln(x)))sin^{2}(ln(x))}{x^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{sin(ln(x))cos(cos(ln(x)))}{x^{2}} - \frac{cos(ln(x))cos(cos(ln(x)))}{x^{2}} - \frac{sin(cos(ln(x)))sin^{2}(ln(x))}{x^{2}}\right)}{dx}\\=&\frac{-2sin(ln(x))cos(cos(ln(x)))}{x^{3}} + \frac{cos(ln(x))cos(cos(ln(x)))}{x^{2}(x)} + \frac{sin(ln(x))*-sin(cos(ln(x)))*-sin(ln(x))}{x^{2}(x)} - \frac{-2cos(ln(x))cos(cos(ln(x)))}{x^{3}} - \frac{-sin(ln(x))cos(cos(ln(x)))}{x^{2}(x)} - \frac{cos(ln(x))*-sin(cos(ln(x)))*-sin(ln(x))}{x^{2}(x)} - \frac{-2sin(cos(ln(x)))sin^{2}(ln(x))}{x^{3}} - \frac{cos(cos(ln(x)))*-sin(ln(x))sin^{2}(ln(x))}{x^{2}(x)} - \frac{sin(cos(ln(x)))*2sin(ln(x))cos(ln(x))}{x^{2}(x)}\\=&\frac{-sin(ln(x))cos(cos(ln(x)))}{x^{3}} + \frac{3cos(ln(x))cos(cos(ln(x)))}{x^{3}} - \frac{3sin(cos(ln(x)))sin(ln(x))cos(ln(x))}{x^{3}} + \frac{3sin(cos(ln(x)))sin^{2}(ln(x))}{x^{3}} + \frac{sin^{3}(ln(x))cos(cos(ln(x)))}{x^{3}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-sin(ln(x))cos(cos(ln(x)))}{x^{3}} + \frac{3cos(ln(x))cos(cos(ln(x)))}{x^{3}} - \frac{3sin(cos(ln(x)))sin(ln(x))cos(ln(x))}{x^{3}} + \frac{3sin(cos(ln(x)))sin^{2}(ln(x))}{x^{3}} + \frac{sin^{3}(ln(x))cos(cos(ln(x)))}{x^{3}}\right)}{dx}\\=&\frac{--3sin(ln(x))cos(cos(ln(x)))}{x^{4}} - \frac{cos(ln(x))cos(cos(ln(x)))}{x^{3}(x)} - \frac{sin(ln(x))*-sin(cos(ln(x)))*-sin(ln(x))}{x^{3}(x)} + \frac{3*-3cos(ln(x))cos(cos(ln(x)))}{x^{4}} + \frac{3*-sin(ln(x))cos(cos(ln(x)))}{x^{3}(x)} + \frac{3cos(ln(x))*-sin(cos(ln(x)))*-sin(ln(x))}{x^{3}(x)} - \frac{3*-3sin(cos(ln(x)))sin(ln(x))cos(ln(x))}{x^{4}} - \frac{3cos(cos(ln(x)))*-sin(ln(x))sin(ln(x))cos(ln(x))}{x^{3}(x)} - \frac{3sin(cos(ln(x)))cos(ln(x))cos(ln(x))}{x^{3}(x)} - \frac{3sin(cos(ln(x)))sin(ln(x))*-sin(ln(x))}{x^{3}(x)} + \frac{3*-3sin(cos(ln(x)))sin^{2}(ln(x))}{x^{4}} + \frac{3cos(cos(ln(x)))*-sin(ln(x))sin^{2}(ln(x))}{x^{3}(x)} + \frac{3sin(cos(ln(x)))*2sin(ln(x))cos(ln(x))}{x^{3}(x)} + \frac{-3sin^{3}(ln(x))cos(cos(ln(x)))}{x^{4}} + \frac{3sin^{2}(ln(x))cos(ln(x))cos(cos(ln(x)))}{x^{3}(x)} + \frac{sin^{3}(ln(x))*-sin(cos(ln(x)))*-sin(ln(x))}{x^{3}(x)}\\=& - \frac{10cos(ln(x))cos(cos(ln(x)))}{x^{4}} + \frac{18sin(cos(ln(x)))sin(ln(x))cos(ln(x))}{x^{4}} + \frac{3sin^{2}(ln(x))cos(ln(x))cos(cos(ln(x)))}{x^{4}} - \frac{7sin(cos(ln(x)))sin^{2}(ln(x))}{x^{4}} + \frac{3sin^{2}(ln(x))cos(cos(ln(x)))cos(ln(x))}{x^{4}} - \frac{3sin(cos(ln(x)))cos^{2}(ln(x))}{x^{4}} - \frac{6sin^{3}(ln(x))cos(cos(ln(x)))}{x^{4}} + \frac{sin(cos(ln(x)))sin^{4}(ln(x))}{x^{4}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return