Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of P is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ Cln(B - (\frac{B(B - 1)}{(Pa + B)})) - n(uP + M)*2ln(2)\ with\ respect\ to\ P:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Cln(B - \frac{B^{2}}{(aP + B)} + \frac{B}{(aP + B)}) - 2nuPln(2) - 2nMln(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Cln(B - \frac{B^{2}}{(aP + B)} + \frac{B}{(aP + B)}) - 2nuPln(2) - 2nMln(2)\right)}{dP}\\=&\frac{C(0 - (\frac{-(a + 0)}{(aP + B)^{2}})B^{2} + 0 + (\frac{-(a + 0)}{(aP + B)^{2}})B + 0)}{(B - \frac{B^{2}}{(aP + B)} + \frac{B}{(aP + B)})} - 2nuln(2) - \frac{2nuP*0}{(2)} - \frac{2nM*0}{(2)}\\=&\frac{CB^{2}a}{(aP + B)^{2}(B - \frac{B^{2}}{(aP + B)} + \frac{B}{(aP + B)})} - \frac{CBa}{(aP + B)^{2}(B - \frac{B^{2}}{(aP + B)} + \frac{B}{(aP + B)})} - 2nuln(2)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return