There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{(3x)} - 2{x}^{\frac{1}{5}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{(3x)} - 2{x}^{\frac{1}{5}}\right)}{dx}\\=&({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) - 2({x}^{\frac{1}{5}}((0)ln(x) + \frac{(\frac{1}{5})(1)}{(x)}))\\=&3{e}^{(3x)} - \frac{2}{5x^{\frac{4}{5}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3{e}^{(3x)} - \frac{2}{5x^{\frac{4}{5}}}\right)}{dx}\\=&3({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) - \frac{2*\frac{-4}{5}}{5x^{\frac{9}{5}}}\\=&9{e}^{(3x)} + \frac{8}{25x^{\frac{9}{5}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !