There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{d}^{2}((5{x}^{2} - 2x + 1){e}^{x})({x}^{2})}{d}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 5dx^{4}{e}^{x} - 2dx^{3}{e}^{x} + dx^{2}{e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 5dx^{4}{e}^{x} - 2dx^{3}{e}^{x} + dx^{2}{e}^{x}\right)}{dx}\\=&5d*4x^{3}{e}^{x} + 5dx^{4}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 2d*3x^{2}{e}^{x} - 2dx^{3}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + d*2x{e}^{x} + dx^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&18dx^{3}{e}^{x} + 5dx^{4}{e}^{x} - 5dx^{2}{e}^{x} + 2dx{e}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !