There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {d}^{2}((5{x}^{2} - 2x + 1){e}^{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 5d^{2}x^{2}{e}^{x} - 2d^{2}x{e}^{x} + d^{2}{e}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 5d^{2}x^{2}{e}^{x} - 2d^{2}x{e}^{x} + d^{2}{e}^{x}\right)}{dx}\\=&5d^{2}*2x{e}^{x} + 5d^{2}x^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 2d^{2}{e}^{x} - 2d^{2}x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + d^{2}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&8d^{2}x{e}^{x} - d^{2}{e}^{x} + 5d^{2}x^{2}{e}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !