Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {arctan(x)}^{{sin(x)}^{ln(x)}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {arctan(x)}^{{sin(x)}^{ln(x)}}\right)}{dx}\\=&({arctan(x)}^{{sin(x)}^{ln(x)}}((({sin(x)}^{ln(x)}((\frac{1}{(x)})ln(sin(x)) + \frac{(ln(x))(cos(x))}{(sin(x))})))ln(arctan(x)) + \frac{({sin(x)}^{ln(x)})((\frac{(1)}{(1 + (x)^{2})}))}{(arctan(x))}))\\=&\frac{{sin(x)}^{ln(x)}{arctan(x)}^{{sin(x)}^{ln(x)}}ln(arctan(x))ln(sin(x))}{x} + \frac{{sin(x)}^{ln(x)}{arctan(x)}^{{sin(x)}^{ln(x)}}ln(arctan(x))ln(x)cos(x)}{sin(x)} + \frac{{sin(x)}^{ln(x)}{arctan(x)}^{{sin(x)}^{ln(x)}}}{(x^{2} + 1)arctan(x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return