There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -{x}^{(\frac{-1}{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -{x}^{(\frac{-1}{x})}\right)}{dx}\\=&-({x}^{(\frac{-1}{x})}((\frac{--1}{x^{2}})ln(x) + \frac{(\frac{-1}{x})(1)}{(x)}))\\=&\frac{-{x}^{(\frac{-1}{x})}ln(x)}{x^{2}} + \frac{{x}^{(\frac{-1}{x})}}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !