There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4{x}^{2} + 3{x}^{3}y - 2{y}^{4} - 32\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4x^{2} + 3yx^{3} - 2y^{4} - 32\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4x^{2} + 3yx^{3} - 2y^{4} - 32\right)}{dx}\\=&4*2x + 3y*3x^{2} + 0 + 0\\=&8x + 9yx^{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !