Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(2x - 1)}^{4} + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 16x^{4} - 32x^{3} + 24x^{2} - 8x + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 16x^{4} - 32x^{3} + 24x^{2} - 8x + 2\right)}{dx}\\=&16*4x^{3} - 32*3x^{2} + 24*2x - 8 + 0\\=&64x^{3} - 96x^{2} + 48x - 8\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 64x^{3} - 96x^{2} + 48x - 8\right)}{dx}\\=&64*3x^{2} - 96*2x + 48 + 0\\=&192x^{2} - 192x + 48\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return