Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xx + \frac{x(x + 3)}{(x - 2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2} + \frac{x^{2}}{(x - 2)} + \frac{3x}{(x - 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2} + \frac{x^{2}}{(x - 2)} + \frac{3x}{(x - 2)}\right)}{dx}\\=&2x + (\frac{-(1 + 0)}{(x - 2)^{2}})x^{2} + \frac{2x}{(x - 2)} + 3(\frac{-(1 + 0)}{(x - 2)^{2}})x + \frac{3}{(x - 2)}\\=&2x - \frac{x^{2}}{(x - 2)^{2}} + \frac{2x}{(x - 2)} - \frac{3x}{(x - 2)^{2}} + \frac{3}{(x - 2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return