There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ xtan(x) + log_{x}^{8}{x}^{5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xtan(x) + x^{5}log_{x}^{8}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xtan(x) + x^{5}log_{x}^{8}\right)}{dx}\\=&tan(x) + xsec^{2}(x)(1) + 5x^{4}log_{x}^{8} + x^{5}(\frac{(\frac{(0)}{(8)} - \frac{(1)log_{x}^{8}}{(x)})}{(ln(x))})\\=&tan(x) + xsec^{2}(x) - \frac{x^{4}log_{x}^{8}}{ln(x)} + 5x^{4}log_{x}^{8}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !