There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1}{(1 + 0.792{e}^{0.136}x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(0.792xe + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(0.792xe + 1)}\right)}{dx}\\=&(\frac{-(0.792e + 0.792x*0 + 0)}{(0.792xe + 1)^{2}})\\=&\frac{-0.792e}{(0.792xe + 1)(0.792xe + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !