There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{u}{({({x}^{r} + 1)}^{(\frac{-1}{r})})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = u({x}^{r} + 1)^{\frac{1}{r}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( u({x}^{r} + 1)^{\frac{1}{r}}\right)}{dx}\\=&u(({x}^{r} + 1)^{\frac{1}{r}}((0)ln({x}^{r} + 1) + \frac{(\frac{1}{r})(({x}^{r}((0)ln(x) + \frac{(r)(1)}{(x)})) + 0)}{({x}^{r} + 1)}))\\=&\frac{u{x}^{r}({x}^{r} + 1)^{\frac{1}{r}}}{({x}^{r} + 1)x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !