Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ u{\frac{1}{({x}^{r} + 1)}}^{(\frac{-1}{r})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( u{\frac{1}{({x}^{r} + 1)}}^{(\frac{-1}{r})}\right)}{dx}\\=&u({\frac{1}{({x}^{r} + 1)}}^{(\frac{-1}{r})}((0)ln(\frac{1}{({x}^{r} + 1)}) + \frac{(\frac{-1}{r})((\frac{-(({x}^{r}((0)ln(x) + \frac{(r)(1)}{(x)})) + 0)}{({x}^{r} + 1)^{2}}))}{(\frac{1}{({x}^{r} + 1)})}))\\=&\frac{u{x}^{r}{\frac{1}{({x}^{r} + 1)}}^{(\frac{-1}{r})}}{({x}^{r} + 1)x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return