There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ m{({x}^{r} + 3)}^{(\frac{-1}{r})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( m({x}^{r} + 3)^{(\frac{-1}{r})}\right)}{dx}\\=&m(({x}^{r} + 3)^{(\frac{-1}{r})}((0)ln({x}^{r} + 3) + \frac{(\frac{-1}{r})(({x}^{r}((0)ln(x) + \frac{(r)(1)}{(x)})) + 0)}{({x}^{r} + 3)}))\\=&\frac{-m{x}^{r}({x}^{r} + 3)^{(\frac{-1}{r})}}{({x}^{r} + 3)x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !