There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(7{x}^{2} + 56x - 63)}{(9 - 4x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{7x^{2}}{(-4x + 9)} + \frac{56x}{(-4x + 9)} - \frac{63}{(-4x + 9)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{7x^{2}}{(-4x + 9)} + \frac{56x}{(-4x + 9)} - \frac{63}{(-4x + 9)}\right)}{dx}\\=&7(\frac{-(-4 + 0)}{(-4x + 9)^{2}})x^{2} + \frac{7*2x}{(-4x + 9)} + 56(\frac{-(-4 + 0)}{(-4x + 9)^{2}})x + \frac{56}{(-4x + 9)} - 63(\frac{-(-4 + 0)}{(-4x + 9)^{2}})\\=&\frac{28x^{2}}{(-4x + 9)^{2}} + \frac{14x}{(-4x + 9)} + \frac{224x}{(-4x + 9)^{2}} - \frac{252}{(-4x + 9)^{2}} + \frac{56}{(-4x + 9)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !