There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{1}{10} + {x}^{2})*\frac{1}{10}}{(\frac{1}{10} + x - {x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{10}x^{2}}{(x - x^{2} + \frac{1}{10})} + \frac{\frac{1}{100}}{(x - x^{2} + \frac{1}{10})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{10}x^{2}}{(x - x^{2} + \frac{1}{10})} + \frac{\frac{1}{100}}{(x - x^{2} + \frac{1}{10})}\right)}{dx}\\=&\frac{1}{10}(\frac{-(1 - 2x + 0)}{(x - x^{2} + \frac{1}{10})^{2}})x^{2} + \frac{\frac{1}{10}*2x}{(x - x^{2} + \frac{1}{10})} + \frac{1}{100}(\frac{-(1 - 2x + 0)}{(x - x^{2} + \frac{1}{10})^{2}})\\=&\frac{x^{3}}{5(x - x^{2} + \frac{1}{10})^{2}} - \frac{x^{2}}{10(x - x^{2} + \frac{1}{10})^{2}} + \frac{x}{5(x - x^{2} + \frac{1}{10})} + \frac{x}{50(x - x^{2} + \frac{1}{10})^{2}} - \frac{1}{100(x - x^{2} + \frac{1}{10})^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !