Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{10} + {x}^{2})*\frac{1}{10}{\frac{1}{(\frac{1}{10} + x - {x}^{2})}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{10}x^{2}}{(x - x^{2} + \frac{1}{10})^{2}} + \frac{\frac{1}{100}}{(x - x^{2} + \frac{1}{10})^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{10}x^{2}}{(x - x^{2} + \frac{1}{10})^{2}} + \frac{\frac{1}{100}}{(x - x^{2} + \frac{1}{10})^{2}}\right)}{dx}\\=&\frac{1}{10}(\frac{-2(1 - 2x + 0)}{(x - x^{2} + \frac{1}{10})^{3}})x^{2} + \frac{\frac{1}{10}*2x}{(x - x^{2} + \frac{1}{10})^{2}} + \frac{1}{100}(\frac{-2(1 - 2x + 0)}{(x - x^{2} + \frac{1}{10})^{3}})\\=&\frac{2x^{3}}{5(x - x^{2} + \frac{1}{10})^{3}} - \frac{x^{2}}{5(x - x^{2} + \frac{1}{10})^{3}} + \frac{x}{5(x - x^{2} + \frac{1}{10})^{2}} + \frac{x}{25(x - x^{2} + \frac{1}{10})^{3}} - \frac{1}{50(x - x^{2} + \frac{1}{10})^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return