There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(\frac{(arcsin(x))}{(x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{arcsin(x)}{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{arcsin(x)}{x})\right)}{dx}\\=&\frac{(\frac{-arcsin(x)}{x^{2}} + \frac{(\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})}{x})}{(\frac{arcsin(x)}{x})}\\=&\frac{-1}{x} + \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}arcsin(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{x} + \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}arcsin(x)}\right)}{dx}\\=&\frac{--1}{x^{2}} + \frac{(\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})}{arcsin(x)} + \frac{(\frac{-(1)}{arcsin^{2}(x)((1 - (x)^{2})^{\frac{1}{2}})})}{(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{1}{x^{2}} + \frac{x}{(-x^{2} + 1)^{\frac{3}{2}}arcsin(x)} - \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}(-x^{2} + 1)^{\frac{1}{2}}arcsin^{2}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !