Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ e^{-2x}(cos(2x) - 2sin(2x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{-2x}cos(2x) - 2e^{-2x}sin(2x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{-2x}cos(2x) - 2e^{-2x}sin(2x)\right)}{dx}\\=&e^{-2x}*-2cos(2x) + e^{-2x}*-sin(2x)*2 - 2e^{-2x}*-2sin(2x) - 2e^{-2x}cos(2x)*2\\=&-6e^{-2x}cos(2x) + 2e^{-2x}sin(2x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -6e^{-2x}cos(2x) + 2e^{-2x}sin(2x)\right)}{dx}\\=&-6e^{-2x}*-2cos(2x) - 6e^{-2x}*-sin(2x)*2 + 2e^{-2x}*-2sin(2x) + 2e^{-2x}cos(2x)*2\\=&16e^{-2x}cos(2x) + 8e^{-2x}sin(2x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return