There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (3 - 4x)e^{2x} - 2e^{-2x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3e^{2x} - 4xe^{2x} - 2e^{-2x}\right)}{dx}\\=&3e^{2x}*2 - 4e^{2x} - 4xe^{2x}*2 - 2e^{-2x}*-2\\=&2e^{2x} - 8xe^{2x} + 4e^{-2x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2e^{2x} - 8xe^{2x} + 4e^{-2x}\right)}{dx}\\=&2e^{2x}*2 - 8e^{2x} - 8xe^{2x}*2 + 4e^{-2x}*-2\\=&-4e^{2x} - 16xe^{2x} - 8e^{-2x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !