There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (-4)e^{-3x} - 2e^{-5x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -4e^{-3x} - 2e^{-5x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -4e^{-3x} - 2e^{-5x}\right)}{dx}\\=&-4e^{-3x}*-3 - 2e^{-5x}*-5\\=&12e^{-3x} + 10e^{-5x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 12e^{-3x} + 10e^{-5x}\right)}{dx}\\=&12e^{-3x}*-3 + 10e^{-5x}*-5\\=&-36e^{-3x} - 50e^{-5x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !