There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{x} - {2}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x} - {2}^{x}\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - ({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))\\=& - {2}^{x}ln(2) + {e}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - {2}^{x}ln(2) + {e}^{x}\right)}{dx}\\=& - ({2}^{x}((1)ln(2) + \frac{(x)(0)}{(2)}))ln(2) - \frac{{2}^{x}*0}{(2)} + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=& - {2}^{x}ln^{2}(2) + {e}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !