There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(-2 - x - 2xxx)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (-x - 2x^{3} - 2)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (-x - 2x^{3} - 2)^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(-1 - 2*3x^{2} + 0)}{(-x - 2x^{3} - 2)^{\frac{1}{2}}})\\=&\frac{-3x^{2}}{(-x - 2x^{3} - 2)^{\frac{1}{2}}} - \frac{1}{2(-x - 2x^{3} - 2)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !