There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 3{x}^{\frac{1}{2}} + {(10 - 2x)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3x^{\frac{1}{2}} + (-2x + 10)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3x^{\frac{1}{2}} + (-2x + 10)^{\frac{1}{2}}\right)}{dx}\\=&\frac{3*\frac{1}{2}}{x^{\frac{1}{2}}} + (\frac{\frac{1}{2}(-2 + 0)}{(-2x + 10)^{\frac{1}{2}}})\\=&\frac{3}{2x^{\frac{1}{2}}} - \frac{1}{(-2x + 10)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !