There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x + {(x + {(x)}^{\frac{1}{6}})}^{\frac{1}{6}})}^{\frac{1}{6}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x + (x + x^{\frac{1}{6}})^{\frac{1}{6}})^{\frac{1}{6}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x + (x + x^{\frac{1}{6}})^{\frac{1}{6}})^{\frac{1}{6}}\right)}{dx}\\=&(\frac{\frac{1}{6}(1 + (\frac{\frac{1}{6}(1 + \frac{\frac{1}{6}}{x^{\frac{5}{6}}})}{(x + x^{\frac{1}{6}})^{\frac{5}{6}}}))}{(x + (x + x^{\frac{1}{6}})^{\frac{1}{6}})^{\frac{5}{6}}})\\=&\frac{1}{216(x + x^{\frac{1}{6}})^{\frac{5}{6}}(x + (x + x^{\frac{1}{6}})^{\frac{1}{6}})^{\frac{5}{6}}x^{\frac{5}{6}}} + \frac{1}{36(x + x^{\frac{1}{6}})^{\frac{5}{6}}(x + (x + x^{\frac{1}{6}})^{\frac{1}{6}})^{\frac{5}{6}}} + \frac{1}{6(x + (x + x^{\frac{1}{6}})^{\frac{1}{6}})^{\frac{5}{6}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !