There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x(1 - bx + \frac{d(1 + dx)}{(2b)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x - bx^{2} + \frac{\frac{1}{2}dx}{b} + \frac{\frac{1}{2}d^{2}x^{2}}{b}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x - bx^{2} + \frac{\frac{1}{2}dx}{b} + \frac{\frac{1}{2}d^{2}x^{2}}{b}\right)}{dx}\\=&1 - b*2x + \frac{\frac{1}{2}d}{b} + \frac{\frac{1}{2}d^{2}*2x}{b}\\=& - 2bx + \frac{d^{2}x}{b} + \frac{d}{2b} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !