Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(\frac{({x}^{2} + 7)}{({x}^{2} - 7)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(\frac{x^{2}}{(x^{2} - 7)} + \frac{7}{(x^{2} - 7)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(\frac{x^{2}}{(x^{2} - 7)} + \frac{7}{(x^{2} - 7)})\right)}{dx}\\=&\frac{((\frac{-(2x + 0)}{(x^{2} - 7)^{2}})x^{2} + \frac{2x}{(x^{2} - 7)} + 7(\frac{-(2x + 0)}{(x^{2} - 7)^{2}}))*\frac{1}{2}}{(\frac{x^{2}}{(x^{2} - 7)} + \frac{7}{(x^{2} - 7)})^{\frac{1}{2}}}\\=&\frac{-x^{3}}{(x^{2} - 7)^{2}(\frac{x^{2}}{(x^{2} - 7)} + \frac{7}{(x^{2} - 7)})^{\frac{1}{2}}} + \frac{x}{(x^{2} - 7)(\frac{x^{2}}{(x^{2} - 7)} + \frac{7}{(x^{2} - 7)})^{\frac{1}{2}}} - \frac{7x}{(x^{2} - 7)^{2}(\frac{x^{2}}{(x^{2} - 7)} + \frac{7}{(x^{2} - 7)})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return