Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of y is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-4{x}^{2}({y}^{3} - 2y)}{({({y}^{4} - 4{y}^{2} + 5)}^{2})}\ with\ respect\ to\ y:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-4x^{2}y^{3}}{(y^{4} - 4y^{2} + 5)^{2}} + \frac{8x^{2}y}{(y^{4} - 4y^{2} + 5)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-4x^{2}y^{3}}{(y^{4} - 4y^{2} + 5)^{2}} + \frac{8x^{2}y}{(y^{4} - 4y^{2} + 5)^{2}}\right)}{dy}\\=&-4(\frac{-2(4y^{3} - 4*2y + 0)}{(y^{4} - 4y^{2} + 5)^{3}})x^{2}y^{3} - \frac{4x^{2}*3y^{2}}{(y^{4} - 4y^{2} + 5)^{2}} + 8(\frac{-2(4y^{3} - 4*2y + 0)}{(y^{4} - 4y^{2} + 5)^{3}})x^{2}y + \frac{8x^{2}}{(y^{4} - 4y^{2} + 5)^{2}}\\=&\frac{32x^{2}y^{6}}{(y^{4} - 4y^{2} + 5)^{3}} - \frac{128x^{2}y^{4}}{(y^{4} - 4y^{2} + 5)^{3}} - \frac{12x^{2}y^{2}}{(y^{4} - 4y^{2} + 5)^{2}} + \frac{128x^{2}y^{2}}{(y^{4} - 4y^{2} + 5)^{3}} + \frac{8x^{2}}{(y^{4} - 4y^{2} + 5)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return