There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{10} - {x}^{9} + 2){x}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{10}{x}^{x} - x^{9}{x}^{x} + 2{x}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{10}{x}^{x} - x^{9}{x}^{x} + 2{x}^{x}\right)}{dx}\\=&10x^{9}{x}^{x} + x^{10}({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) - 9x^{8}{x}^{x} - x^{9}({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)})) + 2({x}^{x}((1)ln(x) + \frac{(x)(1)}{(x)}))\\=&x^{10}{x}^{x}ln(x) - x^{9}{x}^{x}ln(x) + 9x^{9}{x}^{x} - 9x^{8}{x}^{x} + x^{10}{x}^{x} + 2{x}^{x}ln(x) + 2{x}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !