There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {2}^{sin(x)}(cos(cos(x)))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {2}^{sin(x)}cos(cos(x))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{sin(x)}cos(cos(x))\right)}{dx}\\=&({2}^{sin(x)}((cos(x))ln(2) + \frac{(sin(x))(0)}{(2)}))cos(cos(x)) + {2}^{sin(x)}*-sin(cos(x))*-sin(x)\\=&{2}^{sin(x)}ln(2)cos(x)cos(cos(x)) + {2}^{sin(x)}sin(x)sin(cos(x))\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !