Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ {x}^{e^{l}}og*8x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 8ogx{x}^{e^{l}}\\\\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&\frac{-54351664128og{x}^{e^{l}}e^{{l}*{3}}}{x^{14}} - \frac{50263711680og{x}^{e^{l}}e^{{l}*{4}}}{x^{14}} + \frac{82848394720og{x}^{e^{l}}e^{{l}*{5}}}{x^{14}} - \frac{52972679760og{x}^{e^{l}}e^{{l}*{6}}}{x^{14}} + \frac{20361405064og{x}^{e^{l}}e^{{l}*{7}}}{x^{14}} - \frac{5247253440og{x}^{e^{l}}e^{{l}*{8}}}{x^{14}} + \frac{946934560og{x}^{e^{l}}e^{{l}*{9}}}{x^{14}} - \frac{121561440og{x}^{e^{l}}e^{{l}*{10}}}{x^{14}} + \frac{11067056og{x}^{e^{l}}e^{{l}*{11}}}{x^{14}} - \frac{698880og{x}^{e^{l}}e^{{l}*{12}}}{x^{14}} + \frac{29120og{x}^{e^{l}}e^{{l}*{13}}}{x^{14}} - \frac{720og{x}^{e^{l}}e^{{l}*{14}}}{x^{14}} + \frac{8og{x}^{e^{l}}e^{{l}*{15}}}{x^{14}} - \frac{49816166400og{x}^{e^{l}}e^{l}}{x^{14}} + \frac{108605905920og{x}^{e^{l}}e^{{l}*{2}}}{x^{14}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return