There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln((2x){\frac{1}{(({x}^{2}) + 1)}}^{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{2x}{(x^{2} + 1)^{3}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{2x}{(x^{2} + 1)^{3}})\right)}{dx}\\=&\frac{(2(\frac{-3(2x + 0)}{(x^{2} + 1)^{4}})x + \frac{2}{(x^{2} + 1)^{3}})}{(\frac{2x}{(x^{2} + 1)^{3}})}\\=&\frac{-6x}{(x^{2} + 1)} + \frac{1}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !