There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({x}^{2} - 4x + 5)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{6} - 12x^{5} + 63x^{4} - 184x^{3} + 315x^{2} - 300x + 125\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{6} - 12x^{5} + 63x^{4} - 184x^{3} + 315x^{2} - 300x + 125\right)}{dx}\\=&6x^{5} - 12*5x^{4} + 63*4x^{3} - 184*3x^{2} + 315*2x - 300 + 0\\=&6x^{5} - 60x^{4} + 252x^{3} - 552x^{2} + 630x - 300\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !