There are 1 questions in this calculation: for each question, the 2 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (sin(t))sin(t)ln(t)\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(t)sin^{2}(t)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(t)sin^{2}(t)\right)}{dt}\\=&\frac{sin^{2}(t)}{(t)} + ln(t)*2sin(t)cos(t)\\=&\frac{sin^{2}(t)}{t} + 2ln(t)sin(t)cos(t)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{sin^{2}(t)}{t} + 2ln(t)sin(t)cos(t)\right)}{dt}\\=&\frac{-sin^{2}(t)}{t^{2}} + \frac{2sin(t)cos(t)}{t} + \frac{2sin(t)cos(t)}{(t)} + 2ln(t)cos(t)cos(t) + 2ln(t)sin(t)*-sin(t)\\=&\frac{4sin(t)cos(t)}{t} - \frac{sin^{2}(t)}{t^{2}} + 2ln(t)cos^{2}(t) - 2ln(t)sin^{2}(t)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !