Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{3({({(40 - 3x)}^{2} - 400)}^{\frac{1}{2}})}{(40 - 3x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{3(9x^{2} - 240x + 1200)^{\frac{1}{2}}}{(-3x + 40)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{3(9x^{2} - 240x + 1200)^{\frac{1}{2}}}{(-3x + 40)}\right)}{dx}\\=&3(\frac{-(-3 + 0)}{(-3x + 40)^{2}})(9x^{2} - 240x + 1200)^{\frac{1}{2}} + \frac{3(\frac{\frac{1}{2}(9*2x - 240 + 0)}{(9x^{2} - 240x + 1200)^{\frac{1}{2}}})}{(-3x + 40)}\\=&\frac{27x}{(9x^{2} - 240x + 1200)^{\frac{1}{2}}(-3x + 40)} + \frac{9(9x^{2} - 240x + 1200)^{\frac{1}{2}}}{(-3x + 40)^{2}} - \frac{360}{(9x^{2} - 240x + 1200)^{\frac{1}{2}}(-3x + 40)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return