There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - sqrt(1 - \frac{xx}{4}))*700}{x} + (\frac{xx}{8} + 0.667*15)x*2.25\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{700sqrt(-0.25x^{2} + 1)}{x} + \frac{700}{x} + 0.28125x^{3} + 22.51125x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{700sqrt(-0.25x^{2} + 1)}{x} + \frac{700}{x} + 0.28125x^{3} + 22.51125x\right)}{dx}\\=& - \frac{700*-sqrt(-0.25x^{2} + 1)}{x^{2}} - \frac{700(-0.25*2x + 0)*0.5}{x(-0.25x^{2} + 1)^{\frac{1}{2}}} + \frac{700*-1}{x^{2}} + 0.28125*3x^{2} + 22.51125\\=& - \frac{-700sqrt(-0.25x^{2} + 1)}{x^{2}} + \frac{175}{(-0.25x^{2} + 1)^{\frac{1}{2}}} - \frac{700}{x^{2}} + 0.84375x^{2} + 22.51125\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !