There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({10}^{x}) - log_{10}^{x + 5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {10}^{x} - log_{10}^{x + 5}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {10}^{x} - log_{10}^{x + 5}\right)}{dx}\\=&({10}^{x}((1)ln(10) + \frac{(x)(0)}{(10)})) - (\frac{(\frac{(1 + 0)}{(x + 5)} - \frac{(0)log_{10}^{x + 5}}{(10)})}{(ln(10))})\\=&{10}^{x}ln(10) - \frac{1}{(x + 5)ln(10)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !