There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ y({x}^{2} + 1)({x}^{2} - z) + \frac{1}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = yx^{4} - yzx^{2} + yx^{2} - yz + \frac{1}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( yx^{4} - yzx^{2} + yx^{2} - yz + \frac{1}{x}\right)}{dx}\\=&y*4x^{3} - yz*2x + y*2x + 0 + \frac{-1}{x^{2}}\\=&4yx^{3} - 2yzx + 2yx - \frac{1}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !