Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{4}tan(({x}^{3})(e^{x}))e^{({x}^{2}){(sec({x}^{5}))}^{3}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{4}e^{x^{2}sec^{3}(x^{5})}tan(x^{3}e^{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{4}e^{x^{2}sec^{3}(x^{5})}tan(x^{3}e^{x})\right)}{dx}\\=&4x^{3}e^{x^{2}sec^{3}(x^{5})}tan(x^{3}e^{x}) + x^{4}e^{x^{2}sec^{3}(x^{5})}(2xsec^{3}(x^{5}) + x^{2}*3sec^{3}(x^{5})tan(x^{5})*5x^{4})tan(x^{3}e^{x}) + x^{4}e^{x^{2}sec^{3}(x^{5})}sec^{2}(x^{3}e^{x})(3x^{2}e^{x} + x^{3}e^{x})\\=&2x^{5}e^{x^{2}sec^{3}(x^{5})}tan(x^{3}e^{x})sec^{3}(x^{5}) + 15x^{10}e^{x^{2}sec^{3}(x^{5})}tan(x^{5})tan(x^{3}e^{x})sec^{3}(x^{5}) + 4x^{3}e^{x^{2}sec^{3}(x^{5})}tan(x^{3}e^{x}) + 3x^{6}e^{x^{2}sec^{3}(x^{5})}e^{x}sec^{2}(x^{3}e^{x}) + x^{7}e^{x}e^{x^{2}sec^{3}(x^{5})}sec^{2}(x^{3}e^{x})\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return